Insurance providers are rich with data far beyond what they once had at their disposal for traditional historical analysis. The quantity, variety, and complexity of that data enhance the ability of insurers to gain greater insights into consumers, market trends, and strategies to improve their bottom line. But which projects offer you the best return on your investment? Here’s a glimpse at some of the most common insurance analytics project use cases that can transform the capabilities of your business.
Issuing More Policies
Use your historical data to predict when a customer is most likely to buy a new policy.
Both traditional insurance providers and digital newcomers are competing for the same customer base. As a result, acquiring new customers requires targeted outreach with the right message at the moment a buyer is ready to purchase a specific type of insurance.
Predictive analytics allows insurance companies to evaluate the demographics of the target audience, their buying signals, preferences, buying patterns, pricing sensitivity, and a variety of other data points that forecast buyer readiness. This real-time data empowers insurers to reach policyholders with customized messaging that makes them more likely to convert.
Quoting Accurate Premiums
Provide instant access to correct quotes and speed up the time to purchase.
Consumers want the best value when shopping for insurance coverage, but if their quote fails to match their premium, they’ll take their business elsewhere. Insurers hoping to acquire and retain policyholders need to ensure their quotes are precise – no matter how complex the policy.
For example, one of our clients wanted to provide ride-share drivers with four-hour customized micro policies on-demand. Using real-time analytical functionality, we enabled them to quickly and accurately underwrite policies on the spot.
Improving Customer Experience
Better understand your customer’s preferences and optimize future interactions.
A positive customer experience means strong customer retention, a better brand reputation, and a reduced likelihood that a customer will leave you for the competition. In an interview with CMSWire, the CEO of John Hancock Insurance said many customers see the whole process as “cumbersome, invasive, and long.” A key solution is reaching out to customers in a way that balances automation and human interaction.
For example, the right analytics platform can help your agents engage policyholders at a deeper level. It can combine the customer story and their preferences from across customer channels to provide more personalized interactions that make customers feel valued.
Detecting Fraud
Stop fraud before it happens.
You want to provide all of your customers with the most economical coverage, but unnecessary costs inflate your overall expenses. Enterprise analytics platforms enable claims analysis to evaluate petabytes of data to detect trends that indicate fraud, waste, and abuse.
See for yourself how a tool like Tableau can help you quickly spot suspicious behavior with visual insurance fraud analysis.
Improving Operations and Financials
Access and analyze financial data in real time.
In 2019, ongoing economic growth, rising interest rates, and higher investment income were creating ideal conditions for insurers. However, that’s only if a company is maximizing their operations and ledgers.
Now, high-powered analytics has the potential to provide insurers with a real-time understanding of loss ratios, using a wide range of data points to evaluate which of your customers are underpaying or overpaying.
Are you interested in learning how a modern analytics platform like Tableau, Power BI, Looker, or other BI technologies can help you drive ROI for your insurance organization? Schedule a no-cost insurance whiteboarding strategy session to explore the full potential of your insurance data.




