Cloud Autonomics and Automated Management and Optimization: Update

The holy grail of IT Operations is to achieve a state where all mundane, repeatable remediations occur without intervention, with a human only being woken for any action that simply cannot be automated.  This allows not only for many restful nights, but it also allows IT operations teams to become more agile while maintaining a proactive and highly-optimized enterprise cloud.  Getting to that state seems like it can only be found in the greatest online fantasy game, but the growing popularity of “AIOps” gives great hope that this may actually be closer to a reality than once thought.

Skeptics will tell you that automation, autonomics, orchestration, and optimization have been alive and well in the datacenter for more than a decade now. Companies like Microsoft with System Center, IBM with Tivoli, and ServiceNow are just a few examples of autonomic platforms that harness the ability to collect, analyze and make decisions on how to act against sensor data derived from physical/virtual infrastructure and appliances.  But when you couple these capabilities with advancements brought through AIOps, you are able take advantage of the previously missing components by incorporating big data analytics along with artificial intelligence (AI) and Machine Learning (ML).

As you can imagine, these advancements have brought an explosion of new tooling and services from Cloud ISV’s thought to make the once utopian Autonomic cloud a reality. Palo Alto Network’s Prisma Public Cloud product is great example of a technology that functions with autonomic capabilities.  The security and compliance features of Prisma Public Cloud are pretty impressive, but it also has a component known as User and Entity Behavior Analytics (UEBA).  UEBA analyzes user activity data from logs, network traffic and endpoints and correlates this data with security threat intelligence to identify activities—or behaviors—likely to indicate a malicious presence in your environment. After analyzing the current state of the vulnerability and risk landscape, it reports current risk and vulnerability state and derives a set of guided remediations that can be either performed manually against the infrastructure in question or automated for remediation to ensure a proactive response, hands off, to ensure vulnerabilities and security compliance can always be maintained.

Another ISV focused on AIOps is MoogSoft who is bringing a next generation platform for IT incident management to life for the cloud.  Moogsoft has purpose-built machine learning algorithms that are deigned to better correlate alerts and reduce much of the noise associated with all the data points. When you marry this with their Artificial Intelligence capabilities for IT operations, they are helping DevOps teams operate smarter, faster and more effectively in terms of automating traditional IT operations tasks.

As we move forward, expect to see more and more AI and ML-based functionality move into the core cloud management platforms as well. Amazon recently released AWS Control Tower to aide your company’s journey towards AIOps.  While coming with some pretty incredible features for new account creation and increased multi-account visibility, it uses service control policies (SCPs) based upon established guardrails (rules and policies).  As new resources and accounts come online, Control Tower can force compliance with the policies automatically, preventing “bad behavior” by users and eliminating the need to have IT configure resources after they come online. Once AWS Control Tower is being utilized, these guardrails can apply to multi-account environments and new accounts as they are created.

It is an exciting time for autonomic platforms and autonomic systems capabilities in the cloud, and we are excited to help customers realize the many potential capabilities and benefits which can help automate, orchestrate and proactively maintain and optimize your core cloud infrastructure.

To learn more about autonomic systems and capabilities, check out Gartner’s AIOps research and reach out to 2nd Watch. We would love to help you realize the potential of autonomic platforms and autonomic technologies in your cloud environment today!

-Dusty Simoni, Sr Product Manager

 

 

 


Operating and maintaining systems at scale with automation

Managing numerous customers with unique characteristics and tens of thousands of systems at scale can be challenging. Here, I want to pull back the curtain on some of the automation and tools that 2nd Watch develops to solve these problems. Below I will outline our approach to this problem and its 3 main components: Collect, Model, and React.

Collect: The first problem facing us is an overwhelming flood of data. We have CloudWatch metrics, CloudTrail events, custom monitoring information, service requests, incidents, tags, users, accounts, subscriptions, alerts, etc. The data is all structured differently, tells us different stories, and is collected at an unrelenting pace. We need to identify all the sources, collect the data, and store it in a central place so we can begin to consume it and make correlations between various events.

Most of the data I described above can be gathered from the AWS & Azure APIs directly, while others may need to be ingested with an agent or by custom scripts. We also need to make sure we have a consistent core set of data being brought in for each of our customers, while also expanding that to include some specialized data that perhaps only certain customers may have. All the data is gathered and sent to our Splunk indexers. We build an index for every customer to ensure that data stays segregated and secure.

Model: Next we need to present the data in a useful way. The modeling of the data can vary depending on who is using it or how it is going to be consumed. A dashboard with a quick look at several important metrics can be very useful to an engineer to see the big picture. Seeing this data daily or throughout the day will make anomalies very apparent. This is especially helpful because gathering and organizing the data at scale can be time consuming, and thus could reasonably only be done during periodic audits.

Modeling the data in Splunk allows for a low overhead view with up-to-date data so the engineer can do more important things. A great example of this is provisioned resources by region. If the engineer looks at the data on a regular basis, they would quickly notice that the number of provisioned resources has drastically changed. A 20% increase in the number of EC2 resources could mean several things; Perhaps the customer is doing a large deployment, or maybe Justin accidently put his AWS access key and secret key on GitHub (again).

We provide our customers with regular reports and reviews of their cloud environments. We also use the data collected and modeled in this tool for providing that data. Historical data trended over a month, quarter, and year can help you ask questions or tell a story. It can help you forecast your business, or the number of engineers needed to support it. We recently used the historical tending data to show progress of a large project that included waste removal and a resource tagging overhaul for a customer. Not only were we able to show progress throughout the project,t but we used that same view to ensure that waste did not creep back up and that the new tagging standards were being applied going forward.

React: Finally, it’s time to act on the data we collected and modeled. Using Splunk alerts we can provide conditional logic to the data patterns and act upon them. From Splunk we can call our ticketing system’s API and create a new incident for an engineer to investigate concerning trends or to notify the customer of a potential security risk. We can also call our own APIs that trigger remediation workflows. A few common scenarios are encrypting unencrypted S3 buckets, deleting old snapshots, restarting failed backup jobs, requesting cloud provider limit increases, etc.

Because we have several independent data sources providing information, we can also correlate events and have more advanced conditional logic. If we see that a server is failing status checks, we can also look to see if it recently changed instance families or if it has all the appropriate drivers. This data can be included in the incident and available for the engineer to review without having to check it themselves.

The entire premise of this idea and the solution it outlines is about efficiency and using data and automation to make quicker and smarter decisions. Operating and maintaining systems at scale brings forth numerous challenges and if you are unable to efficiently accommodate the vast amount of information coming at you, you will spend a lot of energy just trying to keep your head above water.

For help getting started in automating your systems, contact us.

-Kenneth Weinreich, Managed Cloud Operations


Standardizing & Automating Infrastructure Development Processes

Introduction

Let’s start with a small look at the current landscape of technology and how we arrived here. There aren’t very many areas of tech that have not been, or are not currently, in a state of fluctuation. Everything from software delivery vehicles and development practices, to infrastructure creation has experienced some degree of transformation over the past several years. From VMs to Containers, it seems like almost every day the technology tool belt grows a little bigger, and our world gets a little better (though perhaps more complex) due to these advancements. For me, this was incredibly apparent when I began to delve into configuration management which later evolved into what we now call “infrastructure as code”.

The transformation of the development process began with simple systems that we once used to manage a few machines (like bash scripts or Makefiles) which then morphed into more complex systems (CF Engine, Puppet, and Chef) to manage thousands of systems. As configuration management software became more mature, engineers and developers began leaning on them to do more things. With the advent of hypervisors and the rise of virtual machines, it was only a short time before hardware requests changed to API requests and thus the birth of infrastructure as a service (IaaS). With all the new capabilities and options in this brave new world, we once again started to lean on our configuration management systems—this time for provisioning, and not just convergence.

Provisioning & Convergence

I mentioned two terms that I want to clarify; provisioning and convergence. Say you were a car manufacturer and you wanted to make a car. Provisioning would be the step in which you request the raw materials to make the parts for your automobile. This is where we would use tools like Terraform, CloudFormation, or Heat. Whereas convergence is the assembly line by which we check each part and assemble the final product (utilizing config management software).

By and large, the former tends to be declarative with little in the way of conditionals or logic, while the latter is designed to be robust and malleable software that supports all the systems we run and plan on running. This is the frame for the remainder of what we are going to talk about.

By separating the concerns of our systems, we can create a clear delineation of the purpose for each tool so we don’t feel like we are trying to jam everything into an interface that doesn’t have the most support for our platform or more importantly our users. The remainder of this post will be directed towards the provisioning aspect of configuration management.

Standards and Standardization

These are two different things in my mind. Standardization is extremely prescriptive and can often seem particularly oppressive to professional knowledge workers, such as engineers or developers. It can be seen as taking the innovation away from the job. Whereas standards provide boundaries, frame the problem, and allow for innovative ways of approaching solutions. I am not saying standardization in some areas is entirely bad, but we should let the people who do the work have the opportunity to grow and innovate in their own way with guidance. The topic of standards and standardization is part of a larger conversation about culture and change. We intend to follow up with a series of blog articles relating to organizational change in the era of the public cloud in the coming weeks.

So, let’s say that we make a standard for our new EC2 instances running Ubuntu. We’ll say that all instances must be running the la official Canonical Ubuntu 14.04 AMI and must have these three tags; Owner, Environment, and Application. How can we enforce that in development of our infrastructure? On AWS, we can create AWS Config Rules, but that is reactive and requires ad-hoc remediation. What we really want is a more prescriptive approach bringing our standards closer to the development pipeline. One of the ways I like to solve this issue is by creating an abstraction. Say we have a terraform template that looks like this:

# Create a new instance of the la Ubuntu 14.04 on an
provider "aws" { region = "us-west-2"
}

data "aws_ami" "ubuntu" { most_recent = true

filter {
name	= "name" values =
["ubuntu/images/hvm-ssd/ubuntu-trusty-1 4.04-amd64-server-*"]
}

filter {
name	= "virtualization-type" values = ["hvm"]
}

owners = ["099720109477"] # Canonical
}

resource "aws_instance" "web" { ami	=
"${data.aws_ami.ubuntu.id}" instance_type = "t2.micro"

tags {
Owner	= "DevOps Ninja" Environment = "Dev" Application = "Web01"
}
}

This would meet the standard that we have set forth, but we are relying on the developer or engineer to adhere to that standard. What if we enforce this standard by codifying it in an abstraction? Let’s take that existing template and turn it into a terraform module instead.

Module

# Create a new instance of the la Ubuntu 14.04 on an

variable "aws_region" {} variable "ec2_owner" {} variable "ec2_env" 
{} variable "ec2_app" {}
variable "ec2_instance_type" {}

provider "aws" {
region = "${var.aws_region}"
}

data "aws_ami" "ubuntu" { most_recent = true

filter {
name	= "name" values =
["ubuntu/images/hvm-ssd/ubuntu-trusty-1 4.04-amd64-server-*"]
}

filter {
name	= "virtualization-type" values = ["hvm"]
}

owners = ["099720109477"] # Canonical
}

resource "aws_instance" "web" { ami	=
"${data.aws_ami.ubuntu.id}" instance_type =
"${var.ec2_instance_type}"

tags {
Owner	= "${var.ec2_owner}" Environment = "${var.ec2_env}" Application = 
"${var.ec2_app}"
}
}

Now we can have our developers and engineers leverage our tf_ubuntu_ec2_instance module.

New Terraform Plan

module "Web01" { source =
"git::ssh://git@github.com/SomeOrg/tf_u buntu_ec2_instance"

aws_region = "us-west-2" ec2_owner = "DevOps Ninja" ec2_env	= "Dev"
ec2_app	= "Web01"
}

This doesn’t enforce the usage of the module, but it does create an abstraction that provides an easy way to maintain standards without a ton of overhead, it also provides an example for further creation of modules that enforce these particular standards.

This leads us into another method of implementing standards but becomes more prescriptive and falls into the category of standardization (eek!). One of the most underutilized services in the AWS product stable has to be Service Catalog.

AWS Service Catalog allows organizations to create and manage catalogs of IT services that are approved for use on AWS. These IT services can include everything from virtual machine images, servers, software, and databases to complete multi-tier application architectures. AWS Service Catalog allows you to centrally manage commonly deployed IT services, and helps you achieve consistent governance and meet your compliance requirements, while enabling users to quickly deploy only the approved IT services they need.

The Interface

Once we have a few of these projects in place (e.g. a service catalog or a repo full of composable modules for infrastructure that meet our standards) how do we serve them out? How you spur adoption of these tools and how they are consumed can be very different depending on your organization structure. We don’t want to upset workflow and how work gets done, we just want it to go faster and be more reliable. This is what we talk about when we mention the interface. Whichever way work flows in, we should supplement it with some type of software or automation to link those pieces of work together. Here are a few examples of how this might look (depending on your organization):

1.) Central IT Managed Provisioning

If you have an organization that manages requests for infrastructure, having this new shift in paradigm might seem daunting. The interface in this case is the ticketing system. This is where we would create an integration with our ticketing software to automatically pull the correct project from service catalog or module repo based on some criteria in the ticket. The interface doesn’t change but is instead supplemented by some automation to answer these requests, saving time and providing faster delivery of service.

2.) Full Stack Engineers

If you have engineers that develop software and the infrastructure that runs their applications this is the easiest scenario to address in some regards and the hardest in others. Your interface might be a build server, or it could simply be the adoption of an internal open source model where each team develops modules and shares them in a common place, constantly trying to save time and not re-invent the wheel.

Supplementing with software or automation can be done in a ton of ways. Check out an example Kelsey Hightower wrote using Jira.

“A complex system that works is invariably found to have evolved from a simple system that worked. A complex system designed from scratch never works and cannot be patched up to make it work. You have to start over with a working simple system.” – John Gall

All good automation starts out with a manual and well-defined process. Standardizing & automating infrastructure development processes begins with understanding how our internal teams can be best organized.  This allows us to efficiently perform work before we can begin automating. Work with your teammates to create a value stream map to understand the process entirely before doing anything towards the efforts of automating a workflow.

With 2nd Watch designs and automation you can deploy quicker, learn faster and modify as needed with Continuous Integration / Continuous Deployment (CI/CD). Our Workload Solutions transform on-premises workloads to digital solutions in the public cloud with next generation products and services.  To accelerate your infrastructure development so that you can deploy faster, learn more often and adapt to customer requirements more effectively, speak with a 2nd Watch cloud deployment expert today.

– Lars Cromley, Director of Engineering, Automation, 2nd Watch