Property and Casualty Insurance Company
Data Warehouse for Consistent and Accurate Insurance Reporting.
An Overview
The Challenge
An auto insurance agency wanted to run consolidated reports from unique databases throughout their various lines of business.
The Solution
2nd Watch built pipelines to ingest data into a centralized data hub architecture.
The Outcome
The centralized data warehouse simplifies the insurance client’s monthly P&L and operational reporting, helping with their reporting consistency and accuracy. This also sets them up for greater innovation in the future.
01
The Challenge
When data analysis is disjointed, businesses struggle to extract consistent and accurate enterprise-level insight. Our industry-leading auto insurance client was a prime example. Comprised of multiple acquisitions, they strained to run consolidated reports from unique databases as a result of numerous policy and claim applications spread across their various lines of business (LOBs).
For example, when running operational reports across important dimensions (state, LOB, insurance product, etc.), they struggled to piece together comprehensive insight. Thanks to an ongoing partnership with 2nd Watch, they knew our strengths with data management and the challenges of running reports in the insurance industry (especially on policy endorsements and claims transactions).
02
The Solution
The 2nd Watch team implemented an agile management approach to clarify the appropriate direction for the project. We interviewed the various stakeholders to identify the business questions they wanted answered and the extensive data sources critical to future reporting. Once the project scope was clearly defined, we dove into delivery.
Using SSIS for ETL and SQL Server, we built pipelines into a single “source of truth” our client could use to achieve greater accessibility and performance in reporting. Our logical data warehousing model integrated more than 25 disparate data sources (all with their own schemas and business logic) into a central location. We unified metadata, security, and governance to ensure that analysis across multiple LOBs would result in accurate and comprehensive insight.

Using user acceptance testing, our team validated how well the needs of business users were met with our centralized data warehouse for insurance reporting. After the initial launch, our client’s users were slow to adopt their new capabilities. We worked closely with their internal team to showcase their new reporting potential, develop a better distribution ecosystem, and foster change management.
03
The Outcome
Our client now enjoys a dramatic simplification of their monthly P&L and operational reporting. A common source of data has cultivated more consistent and accurate reporting that increases agreement between corporate and various LOBs. Their centralized data warehouse has also set the stage for greater innovation in the future. Data science models can soon be applied for more accurate underwriting, fraud detection, and reserve calculations. Plus, self-service dashboarding, deductive data discovery, and bigger and better reporting are now well within reach.